Package: nebula 1.5.4

nebula: Negative Binomial Mixed Models Using Large-Sample Approximation for Differential Expression Analysis of ScRNA-Seq Data

A fast negative binomial mixed model for conducting association analysis of multi-subject single-cell data. It can be used for identifying marker genes, differential expression and co-expression analyses. The model includes subject-level random effects to account for the hierarchical structure in multi-subject single-cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.

Authors:Liang He [aut, cre], Raghav Sharma [ctb]

nebula_1.5.4.tar.gz
nebula_1.5.4.zip(r-4.5)nebula_1.5.4.zip(r-4.4)nebula_1.5.4.zip(r-4.3)
nebula_1.5.4.tgz(r-4.5-x86_64)nebula_1.5.4.tgz(r-4.5-arm64)nebula_1.5.4.tgz(r-4.4-x86_64)nebula_1.5.4.tgz(r-4.4-arm64)nebula_1.5.4.tgz(r-4.3-x86_64)nebula_1.5.4.tgz(r-4.3-arm64)
nebula_1.5.4.tar.gz(r-4.5-noble)nebula_1.5.4.tar.gz(r-4.4-noble)
nebula_1.5.4.tgz(r-4.4-emscripten)
nebula.pdf |nebula.html
nebula/json (API)

# Install 'nebula' in R:
install.packages('nebula', repos = c('https://lhe17.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/lhe17/nebula/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

Conda:

cpp

6.43 score 37 stars 145 scripts 219 downloads 4 exports 171 dependencies

Last updated 7 days agofrom:08eb9c1e17. Checks:1 OK, 11 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 26 2025
R-4.5-win-x86_64NOTEMar 26 2025
R-4.5-mac-x86_64NOTEMar 26 2025
R-4.5-mac-aarch64NOTEMar 26 2025
R-4.5-linux-x86_64NOTEMar 26 2025
R-4.4-win-x86_64NOTEMar 26 2025
R-4.4-mac-x86_64NOTEMar 26 2025
R-4.4-mac-aarch64NOTEMar 26 2025
R-4.4-linux-x86_64NOTEMar 26 2025
R-4.3-win-x86_64NOTEMar 26 2025
R-4.3-mac-x86_64NOTEMar 26 2025
R-4.3-mac-aarch64NOTEMar 26 2025

Exports:group_cellnbresidualnebulascToNeb

Dependencies:abindaskpassbase64encBHBiobaseBiocGenericsbitopsbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcowplotcpp11crayoncrosstalkcurldata.tableDelayedArraydeldirdigestdoFuturedoRNGdotCall64dplyrdqrngevaluatefansifarverfastDummiesfastmapfitdistrplusFNNfontawesomeforeachfsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelazyevalleidenbaselifecyclelistenvlmtestmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellnlmenloptropensslparallellypatchworkpbapplypillarpkgconfigplotlyplyrpngpolyclipprogressrpromisespurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppParallelRcppProgressRcppTOMLreshape2reticulateRfastrlangrmarkdownrngtoolsROCRrprojrootRSpectraRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytextrustUCSC.utilsutf8uwotvctrsviridisLitewithrxfunxtableXVectoryamlziggzoo

A fast negative binomial mixed model for analyzing multi-subject single-cell data

Rendered fromnebula_example.Rmdusingknitr::rmarkdownon Mar 26 2025.

Last update: 2025-03-26
Started: 2020-09-23